
ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 22.-24.05.2024.

1032

IMPROVED AND VECTORISED MATLAB-BASED ALGORITHMS

FOR SERIAL AND PARALLEL IMPLEMENTATION OF FINITE ELEMENT

METHOD IN LINEAR ELASTICITY

Baurice Sylvain Sadjiep Tchuigwa1, Jan Krmela1, 2, Jan Pokorny1, Vladimira Krmelova2
1University of Pardubice, Czech Republic; 2Alexander Dubcek University of Trencin, Slovakia

bauricesylvain.sadjieptchuigwa@student.upce.cz, jan.krmela@tnuni.sk, jan.krmela@upce.cz

Abstract. This paper presents two improved algorithms for efficient sequential and parallel implementation of the

Finite element method (FEM) for both linear and nonlinear boundary value problems. The proposed algorithms

address some weak points, such as the overuse of for-loops and serial computing caused by dependencies in

constructing fundamental expressions (global stiffness matrix, mass matrix, global force vector, etc.) resulting

from the finite element method. By taking advantage of the concepts of sparse matrix representation, vectorization,

and the physical architecture of modern computing resources, the proposed methods are free from mesh

partitioning techniques or similar approaches and enable the use of all available CPU cores/threads without

synchronization. Moreover, these algorithms are also adapted to deal with meshes involving elements of any order

in both 2D and 3D. Two tests from NAFEMS benchmarks are implemented in MATLAB to verify the accuracy

and stability of the proposed algorithms in both serial and parallel processing. According to serial and parallel

computing results, the proposed algorithms perform better than the standard sparse assembly strategy and behave

linearly with the mesh size but at a smaller rate than the latter. In parallel processing, the algorithms are also

demonstrated to be accurate and achieve an efficiency of at least 60% in 2D and 70% with two cores/threads when

the mesh size is greater than 10,000. Moreover, the simulations revealed that the performance gap between the

proposed algorithm and the classical sparse algorithm is more pronounced in 2D than in 3D due to the increase in

degrees of freedom.

Keywords: vectorization, sparse algorithm, finite element, parallel, MATLAB.

Introduction

The Finite Element Method (FEM) has come a long way since its introduction in early [1]. Since

its inception, the application of advanced optimization techniques has become increasingly widespread

in a variety of engineering disciplines, including aerospace, mechanical, and civil engineering. Its

efficacy in designing and refining lightweight, durable structures has contributed significantly to the

advancement in these fields.

Several algorithms have been suggested for implementing FEM in MATLAB[2] in the literature.

Among these, the most frequently used algorithm is the standard one, which involves sparse assembly

of a global matrix/force after constructing the triplet (IndexI, IndexJ, Kvalues). This algorithm employs

a series of for-loops, which are relatively slow in MATLAB. For tackling this slowness, vectorization

is one solution alongside parallelization as investigated in [3; 4]. Although message-passing is a

sophisticated technique for communication between cores on distributed architectures. Its efficiency

depends on minimizing communication time, which can be difficult. Furthermore, it is subsequent to

data pre-processing (domain decomposition into subdomains, renumbering, etc.) [5].

In this paper, we introduce two enhanced algorithms that work for topologies of any order and make

use of all CPU cores/threads for serial and parallel computation of finite element global matrices/vectors

without domain partitioning. To do so, we first briefly introduce a classical and discretized variational

formulation for boundary value problems in elasto-dynamics, examine the shortcomings of the standard

method, and subsequently outline the proposed algorithm. Finally, two benchmark tests (FV32 and

FV52) by NAFEMS [6] are considered to evaluate the accuracy and efficiency of the proposed methods

in serial and parallel execution.

Materials and methods

Let us consider the boundary value problem defined as follows:

{

𝑑𝑖𝑣(�̿�) + 𝑓𝑣⃗⃗ ⃗ = 𝜌�⃗� ̈

�̿��⃗� = 𝑡

�⃗� = �⃗� 𝑝

 𝑖𝑛 Ω𝑡

𝑜𝑛 ∂Ω1

𝑜𝑛 Γ
 (1)

DOI: 10.22616/ERDev.2024.23.TF212

ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 22.-24.05.2024.

1033

where ∂Ω = ∂Ω1 ∪ ∂Ω2 ∪ Γ, with Ω a continuum body that initially (at t = 0) occupies the

domain Ω0 ⊂ ℝ𝑑
|𝑑∈〈1,2 or 3〉 in the reference configuration and Ω𝑡 ⊂ ℝ𝑑

|𝑑∈〈1,2 or 3〉 in the

current configuration and is subjected to body forces 𝑓𝑣⃗⃗ ⃗ per unit mass and a uniform load 𝑡
per unit surface.

At any time in the cartesian coordinates, any point M of the body is described according to the

repeated indices rule by 𝑢 = u𝑖E𝑖 where i ∈ {1,2,3} and E𝑖 are unit orthogonal vectors of the basis. We

consider a linear elasticity constitutive law given by 𝜎 = 𝒞: 𝜀. Where 𝒞 and 𝜀 are the fourth-order

tensor elasticity tensor and small strain tensor, respectively. Let 𝑉 be the space of kinematically

admissible displacement and defined as

𝑉 = {𝑢 ∈ 𝐻1(Ω) | 𝑢 = 𝑢𝑝 𝑜𝑛 Γ} (2)

Using a virtual displacement 𝛿𝑢 ∈ 𝑉, the variational formulation of the boundary value problem is

given by

{

𝑓𝑖𝑛𝑑 𝑢ℎ ∈ 𝑉ℎ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

∫ 𝜌�̈�ℎ ∙ 𝛿𝑢ℎ 𝑑𝑉
⬚

Ωℎ

 + ∫ 𝜎ℎ: 𝛿𝜀ℎ 𝑑𝑉
⬚

Ωℎ

 = ∫ 𝑓 ∙ 𝛿𝑢ℎ𝑑𝑉
⬚

Ωℎ

 + ∫ 𝑡 ∙ 𝛿𝑢ℎ 𝑑𝑆
⬚

∂Ω1

 (3)

Now considering the discretization of the domain into finite elements, the approximate global

displacement can be written in terms of the nodal displacements �̅�𝑖 ∈ < 1,..,𝑛 > and shape functions

𝑁𝑖 ∈ < 1,..,𝑛 > as 𝑢ℎ = ∑ 𝑁𝑖�̅�𝑖
𝑛
1 = 𝑁�̅�𝑒. By replacing this expression in Eq. (3), we end up with

⋃ {∫ 𝜌𝑁𝑒
𝑇𝑁𝑒 𝑑𝑉

⬚

Ω𝑒

}

𝑛

𝑒 = 1

�̈�𝑒 + ⋃ {∫ 𝐵𝑒
𝑇𝒞𝐵𝑒 𝑑𝑉

⬚

Ω𝑒

}

𝑛

𝑒 = 1

�̅�𝑒 =

 = ⋃ {∫ 𝑁𝑒
𝑇𝑓 𝑑𝑉

⬚

Ωℎ

}

𝑛

𝑒 = 1

 + ⋃ {∫ 𝑁𝑒
𝑇𝑡 𝑑𝑆

⬚

∂Ω1

}

𝑛

𝑒 = 1

(4)

Or simply in the global form

𝑀𝑔�̈� + 𝐾𝑔𝑈 = 𝐹𝑣𝑜𝑙 + 𝐹𝜕𝛺1
 (5)

where 𝑀𝑔, 𝐾𝑔, 𝐹𝑣𝑜𝑙, 𝐹𝜕𝛺1
 and 𝑈 – respectively global mass matrix, stiffness matrix, volume force

vector, applied force vector and displacement vector.

For an extensive detail about this type of variational formulation, the reader is referred to research

in [9; 10]. In the common computer-based calculation [8], of K and M, the so-called sparse assembly is

employed and consists in, first of all, calculating the triplet (IndexI: row indices, IndexJ: column indices,

K_values: element values) of all the elements and then call the function sparse to assemble the

stiffness/mass matrix as illustrated in Algorithm 1 (see Fig. 1 and 2).

Fig.1. Standard algorithm (part one)

ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 22.-24.05.2024.

1034

Fig. 2. Standard algorithm (part two)

This procedure is barely the same for the force vector, with the only difference that the column

indices is a vector with 1 as components. Though, this algorithm is relatively efficient for

implementation on one core (serial), it is actually not possible to use it in a parallel pool without

partitioning the discretized domain, since there is the dependency in line 19 of Algorithm 1, which

prevents this loop from being parallelizable.

Proposed algorithms for serial and parallel computing

In this section, we introduce two improved algorithms (alg.Opt in Fig. 3 and alg.Vect in Fig. 4 and

5) that perform well in series and can be parallelized as well without mesh partitioning.

Fig. 3. Proposed optimized algorithm

Fig. 4. Proposed optimized algorithm (part one)

ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 22.-24.05.2024.

1035

Fig. 5. Proposed optimized algorithm (part two)

Results and Discussion

In this section, we assess the accuracy and performance of the proposed schemes in both serial and

parallel processing.

Example 1: NAFEMS Test FV32.

In order to evaluate the performance of our algorithms in serial computing, we consider the well-

known benchmark Test FV32 by NAFEMS [6]. Basically, this plane stress test investigates the natural

vibration of a cantilever tapered membrane (see Fig. 6) with Young’s modulus E = 200 GPa, Poisson’s

ratio = 0.3, density = 8000 kg·m-3 and thickness = 0.05 m. A set of QUAD4 (4-node quadrilateral)

elements ranging from coarse to fine, were created in GMSH software [8] and imported into MATLAB

as topology inputs for the simulation. It should be noted that the hardware resource used to perform

sequential and parallel computing of K and M for this test is an Intel® I7 HP1640 laptop (6 physical

cores) with 15.9GB RAM and a base clock speed of 2.70GHz.

Fig. 6. Schematic drawing of the membrane

In serial execution, Fig. 7 shows that both proposed algorithms are slightly faster than the standard

algorithm. Also, the alg.Vect outperforms alg.Opt. by a small margin.

4.1.1. Verification of accuracy: The simulations were run on a single core using the present methods

on the aforementioned meshes, and the recorded results were identical for both kinds of algorithms.

Table 1 reports the six smallest modal frequencies obtained with the present algorithms and compares

them to those of NAFEMS test [6] for the set of 4 meshes. We precise that ndof = 2.

ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 22.-24.05.2024.

1036

Fig. 7. CPU time vs number of QUAD4 on 1 core

Table 1

Comparison of obtained frequencies with reference values

Mode Nel Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

NAFEMS 𝑓𝑟𝑒𝑓 - 44.623 130.03 162.70 246.05 379.90 391.44

Proposed

algorithms

𝑓𝑐𝑎𝑙

 176 44.83 131.49 162.80 250.45 390.80 392.46

 704 44.67 130.39 162.72 247.14 382.53 391.68

 2816 44.63 130.11 162.70 246.28 380.43 391.48

 1264 44.62 130.03 162.69 246.06 379.89 391.42

Performance analysis: In this part, we investigate the scalability of the proposed algorithms for

carrying out CPU-based parallel computation of the stiffness matrix and the mass matrix for 11 QUAD4

meshes. As it can be observed in Fig. 8, both algorithms require almost the same amount of memory as

the standard algorithm. Talking about performance (computational cost, speedup and efficiency), Fig. 9,

Fig. 10 and Fig. 11 report the behaviour of the scheme with respect to the mesh size number of cores.

The workload balancing is depicted in Fig. 12. Meanwhile, we recall that

speedup =
𝑡1
𝑡𝑛

 𝑎𝑛𝑑

and

efficiency =
speedup

ncore
∗ 100

(6)

Fig. 8. Memory (RAM) usage for computing Kg and Mg

ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 22.-24.05.2024.

1037

Fig. 9. CPU time vs number of QUAD4

Fig. 10. CPU time vs number of cores

Fig. 11. Speedup vs number of cores

ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 22.-24.05.2024.

1038

Fig. 12. Efficiency vs number of cores

Fig. 13. Automatic workload balancing for a parallel pool with 6 cores

for the mesh with 11264 QUAD4

Besides the efficiency reported above, Fig. 13 shows the automatic distribution of mesh elements

hosted by the six cores of the parallel pool. This mapping helps identify elements computed by each

core.

Example 2: NAFEMS Test FV52 (free vibration of a simply supported “solid” square plate)

 The geometry in this test is the four-edge simply supported thick plate depicted in Fig. 14 having for

properties the Young’s modulus E = 200GPa, Poisson’s ratio = 0.3, density = 8000 kg·m-3 and

thickness = 1.00m, meshed with P2-tetrahedral elements. The computing resource used here is

MATLAB online server (only thread-based pool is supported). Table 2 reports the comparison of the

calculated frequencies to the reference value by NAFEMS Test FV52 [6].

Table 2

Comparison of obtained frequencies with reference values

Mode 1, 2, 3 4 5 6 7 8 9 10

NAFEMS

𝑓𝑟𝑒𝑓
- 45.90 109.44 109.44 167.89 193.59 206.19 206.19

𝑓𝑐𝑎𝑙 - 44.64 108.74 108.77 166.14 194.17 205.63 206.90

Error (%) - -2.75 -0.64 -0.62 -1.04 0.30 -0.27 0.35

ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 22.-24.05.2024.

1039

We notice that the error between the two frequencies is less than 1%. Therefore, we conclude that

the rearrangement in the proposed algorithms does not modify the discretized global form in Eq. (6).

In terms of computational cost, Fig. 15 shows the CPU time of alg.Opt, base and alg.Vect (on 1core)

and in parallel (2 or more threads), Fig. 16 and Fig. 17 depict the performance of alg. Vect. We precise

that ndof = 3, Ndof = nne*ndof: is the total number of all degrees of freedom. Only alg.Vect has been

studied in parallel since it is a bit faster.

Fig. 14. Schematic drawing of the 3D plate

Fig. 15. CPU time vs Ndof

Fig. 16. CPU time vs number of threads

ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 22.-24.05.2024.

1040

Fig. 17. Efficiency vs number of threads

Conclusions

In this paper, we propose two improved algorithms for easy FEM calculation of global matrix/force

in serial and parallel processing. These algorithms exploit both good programming practices and

MATLAB functionalities to overcome some limitations of the standard algorithm. As demonstrated in

NAFEM TEST FV32 and FV 52, they are accurate, memory-efficient, and as fast as the standard

algorithm. For meshes with greater than 10 000 elements in 2D and 3D, we achieve with 2 cores/threads

an efficiency of about 60% and 70%, respectively. However, when the number of cores/threads is

greater, the efficiency drops and nearly stagnates at 40%, this is due to overhead. In forthcoming works,

possible directions are the following:

1. improve parallel efficiency using distributed computing;

2. implementation in Julia, Python and C++ languages;

3. extension of the code to nonlinear elasticity and material nonlinearity.

Acknowledgements

The authors acknowledge the funding provided by the University of Pardubice through the grant

number SGS 2024 and the Cultural and Educational Grant Agency of the Slovak Republic (KEGA),

project No. 003TnUAD 4/2022.

Author contributions

Conceptualization, B.S.S.T., J.K.; methodology, B.S.S.T. and J.K.; software, B.S.S.T., J.K., J.P.

and V.K.; validation, B.S.S.T., J.K., J.P. and V.K.; formal analysis, B.S.S.T. and J.K.; investigation,

B.S.S.T., J.K., J.P. and V.K.; data curation, B.S.S.T., J.K., J.P. and V.K.; writing – original draft

preparation, B.S.S.T. and J.K.; writing – review and editing, B.S.S.T., J.K., J.P. and V.K.; visualization,

B.S.S.T., J.K., J.P. and V.K.; project administration, J.K. and J.P.; funding acquisition, B.S.S.T., J.K.,

J.P. and V.K. All authors have read and agreed to the published version of the manuscript.

References

[1] Liu W.K., Li S., Park H.S. Eighty years of the finite element method: Birth, evolution, and future.

Archives of Computational Methods in Engineering. 2022 Oct;29(6): pp. 4431-4453.

DOI: 10.1007/s11831-022-09740-

[2] The MathWorks, Inc. MATLAB version: 9.13.0 (R2022b). [12.01.2024] [online] Available at:

https://www.mathworks.com

[3] Rahman T., Valdman J. Fast MATLAB assembly of FEM matrices in 2D and 3D: Nodal elements.

Applied mathematics and computation. 2013 Mar 1; 219(13): pp. 7151-7158.

DOI: 10.1016/j.amc.2011.08.043

ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 22.-24.05.2024.

1041

[4] Anjam I., Valdman J. Fast MATLAB assembly of FEM matrices in 2D and 3D: Edge elements.

Applied Mathematics and Computation. 2015 Sep 15; 267: pp. 252-263.

DOI: 10.1016/j.amc.2015.03.105

[5] Jolivet P. Domain decomposition methods. Application to high performance computing. PhD

thesis, Université de Grenoble Alpes 2014, p.1- 130. [online] [05.01.2024] Available at :

https://tel.archives-ouvertes.fr/tel-01155718

[6] NAFEMS Ltd. The Standard NAFEMS BENCHMARKS TNSB Rev. 3, NAFEMS Ltd, Scottish

Enterprise Technology Park, Whitworth Building 1990, East Kilbride, Glasgow, United Kingdom.

[7] Sumets P. Computational Framework for the Finite Element Method in MATLAB® and Python.

CRC Press; 2022 Aug 11. DOI: 10.1201/9781003265979

[8] Geuzaine C, Remacle JF. Gmsh: a three-dimensional finite element mesh generator with built-in

pre- and post-processing facilities. International Journal for Numerical Methods in Engineering

2009,79(11), pp. 1309-1331. [online] [05.01.2024] Available at: https://gmsh.info/

[9] Zienkiewicz O.C., Taylor R.L., Zhu J.Z. The finite element method: its basis and fundamentals.

Elsevier 2013,7th ed.p1-714. DOI: 10.1016/C2009-0-24909-9

[10] Wunderlich W., Pilkey W.D. Mechanics of structures: variational and computational methods. CRC

press 2002. DOI: 10.1201/9781420041835

