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Abstract. This paper presents two improved algorithms for efficient sequential and parallel implementation of the 

Finite element method (FEM) for both linear and nonlinear boundary value problems. The proposed algorithms 

address some weak points, such as the overuse of for-loops and serial computing caused by dependencies in 

constructing fundamental expressions (global stiffness matrix, mass matrix, global force vector, etc.) resulting 

from the finite element method. By taking advantage of the concepts of sparse matrix representation, vectorization, 

and the physical architecture of modern computing resources, the proposed methods are free from mesh 

partitioning techniques or similar approaches and enable the use of all available CPU cores/threads without 

synchronization. Moreover, these algorithms are also adapted to deal with meshes involving elements of any order 

in both 2D and 3D. Two tests from NAFEMS benchmarks are implemented in MATLAB to verify the accuracy 

and stability of the proposed algorithms in both serial and parallel processing. According to serial and parallel 

computing results, the proposed algorithms perform better than the standard sparse assembly strategy and behave 

linearly with the mesh size but at a smaller rate than the latter. In parallel processing, the algorithms are also 

demonstrated to be accurate and achieve an efficiency of at least 60% in 2D and 70% with two cores/threads when 

the mesh size is greater than 10,000. Moreover, the simulations revealed that the performance gap between the 

proposed algorithm and the classical sparse algorithm is more pronounced in 2D than in 3D due to the increase in 

degrees of freedom. 

Keywords: vectorization, sparse algorithm, finite element, parallel, MATLAB. 

Introduction 

The Finite Element Method (FEM) has come a long way since its introduction in early [1]. Since 

its inception, the application of advanced optimization techniques has become increasingly widespread 

in a variety of engineering disciplines, including aerospace, mechanical, and civil engineering. Its 

efficacy in designing and refining lightweight, durable structures has contributed significantly to the 

advancement in these fields. 

Several algorithms have been suggested for implementing FEM in MATLAB[2] in the literature. 

Among these, the most frequently used algorithm is the standard one, which involves sparse assembly 

of a global matrix/force after constructing the triplet (IndexI, IndexJ, Kvalues). This algorithm employs 

a series of for-loops, which are relatively slow in MATLAB. For tackling this slowness, vectorization 

is one solution alongside parallelization as investigated in [3; 4]. Although message-passing is a 

sophisticated technique for communication between cores on distributed architectures. Its efficiency 

depends on minimizing communication time, which can be difficult. Furthermore, it is subsequent to 

data pre-processing (domain decomposition into subdomains, renumbering, etc.) [5]. 

In this paper, we introduce two enhanced algorithms that work for topologies of any order and make 

use of all CPU cores/threads for serial and parallel computation of finite element global matrices/vectors 

without domain partitioning. To do so, we first briefly introduce a classical and discretized variational 

formulation for boundary value problems in elasto-dynamics, examine the shortcomings of the standard 

method, and subsequently outline the proposed algorithm. Finally, two benchmark tests (FV32 and 

FV52) by NAFEMS [6] are considered to evaluate the accuracy and efficiency of the proposed methods 

in serial and parallel execution.  

Materials and methods 

Let us consider the boundary value problem defined as follows:  

{

𝑑𝑖𝑣(�̿�) +  𝑓𝑣⃗⃗  ⃗ =  𝜌�⃗� ̈

�̿��⃗�  =  𝑡 

�⃗�  =  �⃗� 𝑝

  
 𝑖𝑛 Ω𝑡

𝑜𝑛 ∂Ω1

𝑜𝑛 Γ
 (1) 
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where  ∂Ω =  ∂Ω1 ∪ ∂Ω2 ∪ Γ, with Ω a continuum body that initially (at t = 0) occupies the 

domain Ω0 ⊂ ℝ𝑑
|𝑑∈〈1,2 or 3〉 in the reference configuration and Ω𝑡 ⊂ ℝ𝑑

|𝑑∈〈1,2 or 3〉 in the 

current configuration and is subjected to body forces 𝑓𝑣⃗⃗  ⃗ per unit mass and a uniform load 𝑡  
per unit surface.  

At any time in the cartesian coordinates, any point M of the body is described according to the 

repeated indices rule by 𝑢 =  u𝑖E𝑖 where i ∈ {1,2,3} and E𝑖 are unit orthogonal vectors of the basis. We 

consider a linear elasticity constitutive law given by 𝜎 =  𝒞: 𝜀. Where 𝒞 and 𝜀 are the fourth-order 

tensor elasticity tensor and small strain tensor, respectively. Let 𝑉 be the space of kinematically 

admissible displacement and defined as  

𝑉 =  {𝑢 ∈ 𝐻1(Ω) | 𝑢 =  𝑢𝑝 𝑜𝑛 Γ} (2) 

Using a virtual displacement 𝛿𝑢 ∈ 𝑉, the variational formulation of the boundary value problem is 

given by 

{

𝑓𝑖𝑛𝑑 𝑢ℎ ∈  𝑉ℎ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

∫ 𝜌�̈�ℎ ∙ 𝛿𝑢ℎ  𝑑𝑉
⬚

Ωℎ

 +  ∫ 𝜎ℎ: 𝛿𝜀ℎ  𝑑𝑉
⬚

Ωℎ

 =  ∫ 𝑓 ∙ 𝛿𝑢ℎ𝑑𝑉
⬚

Ωℎ

 +  ∫ 𝑡 ∙ 𝛿𝑢ℎ  𝑑𝑆
⬚

∂Ω1

 (3) 

Now considering the discretization of the domain into finite elements, the approximate global 

displacement can be written in terms of the nodal displacements �̅�𝑖 ∈ < 1,..,𝑛 >  and shape functions 

𝑁𝑖 ∈ < 1,..,𝑛 >  as 𝑢ℎ =  ∑ 𝑁𝑖�̅�𝑖
𝑛
1  =  𝑁�̅�𝑒. By replacing this expression in Eq. (3), we end up with  

⋃ {∫ 𝜌𝑁𝑒
𝑇𝑁𝑒 𝑑𝑉

⬚

Ω𝑒

}

𝑛

𝑒 = 1

�̈�𝑒 +  ⋃ {∫ 𝐵𝑒
𝑇𝒞𝐵𝑒 𝑑𝑉

⬚

Ω𝑒

}

𝑛

𝑒 = 1

�̅�𝑒 = 

 = ⋃ {∫ 𝑁𝑒
𝑇𝑓 𝑑𝑉

⬚

Ωℎ

}

𝑛

𝑒 = 1

 +  ⋃ {∫ 𝑁𝑒
𝑇𝑡 𝑑𝑆

⬚

∂Ω1

}

𝑛

𝑒 = 1

 

(4) 

Or simply in the global form 

𝑀𝑔�̈� +  𝐾𝑔𝑈 =  𝐹𝑣𝑜𝑙  +  𝐹𝜕𝛺1
 (5) 

where 𝑀𝑔, 𝐾𝑔, 𝐹𝑣𝑜𝑙, 𝐹𝜕𝛺1
 and 𝑈 – respectively global mass matrix, stiffness matrix, volume force 

vector, applied force vector and displacement vector.  

For an extensive detail about this type of variational formulation, the reader is referred to research 

in [9; 10]. In the common computer-based calculation [8], of K and M, the so-called sparse assembly is 

employed and consists in, first of all, calculating the triplet (IndexI: row indices, IndexJ: column indices, 

K_values: element values) of all the elements and then call the function sparse to assemble the 

stiffness/mass matrix as illustrated in Algorithm 1 (see Fig. 1 and 2). 

 

Fig.1. Standard algorithm (part one) 
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Fig. 2. Standard algorithm (part two) 

This procedure is barely the same for the force vector, with the only difference that the column 

indices is a vector with 1 as components. Though, this algorithm is relatively efficient for 

implementation on one core (serial), it is actually not possible to use it in a parallel pool without 

partitioning the discretized domain, since there is the dependency in line 19 of Algorithm 1, which 

prevents this loop from being parallelizable. 

Proposed algorithms for serial and parallel computing 

In this section, we introduce two improved algorithms (alg.Opt in Fig. 3 and alg.Vect in Fig. 4 and 

5) that perform well in series and can be parallelized as well without mesh partitioning. 

 

Fig. 3. Proposed optimized algorithm 

 

Fig. 4. Proposed optimized algorithm (part one) 
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Fig. 5. Proposed optimized algorithm (part two) 

Results and Discussion 

In this section, we assess the accuracy and performance of the proposed schemes in both serial and 

parallel processing. 

Example 1: NAFEMS Test FV32.  

In order to evaluate the performance of our algorithms in serial computing, we consider the well-

known benchmark Test FV32 by NAFEMS [6]. Basically, this plane stress test investigates the natural 

vibration of a cantilever tapered membrane (see Fig. 6) with Young’s modulus E = 200 GPa, Poisson’s 

ratio = 0.3, density = 8000 kg·m-3 and thickness = 0.05 m. A set of QUAD4 (4-node quadrilateral) 

elements ranging from coarse to fine, were created in GMSH software [8] and imported into MATLAB 

as topology inputs for the simulation. It should be noted that the hardware resource used to perform 

sequential and parallel computing of K and M for this test is an Intel® I7 HP1640 laptop (6 physical 

cores) with 15.9GB RAM and a base clock speed of 2.70GHz. 

 

Fig. 6. Schematic drawing of the membrane 

In serial execution, Fig. 7 shows that both proposed algorithms are slightly faster than the standard 

algorithm. Also, the alg.Vect outperforms alg.Opt. by a small margin. 

4.1.1. Verification of accuracy: The simulations were run on a single core using the present methods 

on the aforementioned meshes, and the recorded results were identical for both kinds of algorithms. 

Table 1 reports the six smallest modal frequencies obtained with the present algorithms and compares 

them to those of NAFEMS test [6] for the set of 4 meshes. We precise that ndof = 2. 
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Fig. 7. CPU time vs number of QUAD4 on 1 core 

Table 1 

Comparison of obtained frequencies with reference values 

Mode Nel Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

NAFEMS 𝑓𝑟𝑒𝑓 - 44.623 130.03 162.70 246.05 379.90 391.44 

Proposed 

algorithms 

𝑓𝑐𝑎𝑙 

 176   44.83   131.49   162.80  250.45   390.80   392.46  

 704   44.67   130.39   162.72   247.14   382.53   391.68 

 2816   44.63   130.11   162.70   246.28   380.43   391.48  

 1264   44.62   130.03   162.69   246.06   379.89   391.42  

Performance analysis: In this part, we investigate the scalability of the proposed algorithms for 

carrying out CPU-based parallel computation of the stiffness matrix and the mass matrix for 11 QUAD4 

meshes. As it can be observed in Fig. 8, both algorithms require almost the same amount of memory as 

the standard algorithm. Talking about performance (computational cost, speedup and efficiency), Fig. 9, 

Fig. 10 and Fig. 11 report the behaviour of the scheme with respect to the mesh size number of cores. 

The workload balancing is depicted in Fig. 12. Meanwhile, we recall that 

speedup =  
𝑡1
𝑡𝑛

 𝑎𝑛𝑑  

and 

efficiency =  
speedup

ncore
∗ 100 

(6) 

 

Fig. 8. Memory (RAM) usage for computing Kg and Mg 
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Fig. 9. CPU time vs number of QUAD4 

 

Fig. 10. CPU time vs number of cores 

 

Fig. 11. Speedup vs number of cores 
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Fig. 12. Efficiency vs number of cores 

 

Fig. 13. Automatic workload balancing for a parallel pool with 6 cores  

for the mesh with 11264 QUAD4 

Besides the efficiency reported above, Fig. 13 shows the automatic distribution of mesh elements 

hosted by the six cores of the parallel pool. This mapping helps identify elements computed by each 

core.  

Example 2: NAFEMS Test FV52 (free vibration of a simply supported “solid” square plate) 

 The geometry in this test is the four-edge simply supported thick plate depicted in Fig. 14 having for 

properties the Young’s modulus E = 200GPa, Poisson’s ratio = 0.3, density = 8000 kg·m-3 and 

thickness = 1.00m, meshed with P2-tetrahedral elements. The computing resource used here is 

MATLAB online server (only thread-based pool is supported). Table 2 reports the comparison of the 

calculated frequencies to the reference value by NAFEMS Test FV52 [6]. 

Table 2 

Comparison of obtained frequencies with reference values 

Mode 1, 2, 3 4 5 6 7 8 9 10 

NAFEMS 

𝑓𝑟𝑒𝑓 
- 45.90 109.44 109.44 167.89 193.59 206.19 206.19 

𝑓𝑐𝑎𝑙 - 44.64 108.74 108.77 166.14 194.17 205.63 206.90 

Error (%) - -2.75 -0.64 -0.62 -1.04 0.30 -0.27 0.35 
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We notice that the error between the two frequencies is less than 1%. Therefore, we conclude that 

the rearrangement in the proposed algorithms does not modify the discretized global form in Eq. (6). 

In terms of computational cost, Fig. 15 shows the CPU time of alg.Opt, base and alg.Vect (on 1core) 

and in parallel (2 or more threads), Fig. 16 and Fig. 17 depict the performance of alg. Vect. We precise 

that ndof = 3, Ndof = nne*ndof: is the total number of all degrees of freedom. Only alg.Vect has been 

studied in parallel since it is a bit faster.  

 

Fig. 14. Schematic drawing of the 3D plate 

 

Fig. 15. CPU time vs Ndof 

 

Fig. 16. CPU time vs number of threads 
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Fig. 17. Efficiency vs number of threads 

Conclusions 

In this paper, we propose two improved algorithms for easy FEM calculation of global matrix/force 

in serial and parallel processing. These algorithms exploit both good programming practices and 

MATLAB functionalities to overcome some limitations of the standard algorithm. As demonstrated in 

NAFEM TEST FV32 and FV 52, they are accurate, memory-efficient, and as fast as the standard 

algorithm. For meshes with greater than 10 000 elements in 2D and 3D, we achieve with 2 cores/threads 

an efficiency of about 60% and 70%, respectively. However, when the number of cores/threads is 

greater, the efficiency drops and nearly stagnates at 40%, this is due to overhead. In forthcoming works, 

possible directions are the following: 

1. improve parallel efficiency using distributed computing; 

2. implementation in Julia, Python and C++ languages; 

3. extension of the code to nonlinear elasticity and material nonlinearity. 
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